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Discrete Velocity Models Without
Nonphysical Invariants
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Models for mixtures of discrete velocity gases have been recently introduced by
the authors and have produced unexpected results, particularly with regard to
the possible existence of nonphysical collision invariants. Here we discuss a
method to construct models without spurious invariants. The method can be
extended to very general models, including polyatomic gases, chemical reac-
tions, etc.
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1. INTRODUCTION

The aim of the present paper is to clarify and generalize some aspects of
our recent publications, (1, 2) where Discrete Velocity Models (DVMs) for
gas mixtures in a wide context were introduced. In particular, a general
method to construct such models was proposed, a proof that the models
approximate the Boltzmann equation was sketched, two specific simple
models were described, a definition of the temperature for DVMs was
briefly discussed. However, an important question, i.e., the possible exist-
ence of non-physical collision invariants, was not discussed. As a matter of
fact, the two examples turned out to possess such spurious invariant as
remarked by some of our Colleagues(3, 4) and an anonymous referee of
ref. 2 (see also ref. 5). Therefore the present paper fills the gap of refs. 1
and 2 and discusses a method of constructing models without spurious
invariants. The method can be used for very general models, including
polyatomic gases, chemical reactions, etc. As we shall see below, a key idea
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of our approach is contained in Fig. 4 of ref. 1, where a hierarchy of models
for simple gases is shown. The same scheme can be used in the general case.
We describe how to generalize it in Section 2, where we also prove a quite
elementary Lemma, showing that our scheme does not lead to non-physical
invariants. In contrast with our first examples of simple DVMs in refs. 1
and 2, these models depend strongly on the mass ratio.

In this paper we are mainly interested in DVMs which are symmetric
with respect to an exchange of any pair of coordinate axes. On the other
hand, this property is not very relevant for certain specific problems
(axially symmetric flows). An interesting class of non-symmetric DVMs
without additional invariants was recently considered by H. Cornille and
one of the authors.(5) Moreover, the exact shock wave solutions were con-
structed and investigated in ref. 5 for the simplest non-symmetric DVMs
for binary mixtures. We present a brief discussion of non-symmetric DVMs
at the end of the paper and show how the models(5) can be derived on the
basis of our general scheme. The scheme confirms that the simplest
reasonable DVM for a mixture (the normal semi-symmetric DVM, in our
terminology) contains 11 velocities for arbitrary mass ratio.(5) As to sym-
metric models, the best result (17 velocity model being already found in
ref. 5) corresponds to M=2, where M is the mass ratio. A similar result
(18 velocities) is obtained in Section 3 for M=3.

The scheme described in Section 2 and applied to mixtures in Section 3
allows to construct symmetric DVMs without non-physical invariants for
binary mixtures with arbitrary rational mass ratio. It is remarkable that
this can be done almost without calculations by using simple geometric
considerations. Therefore the paper contans no complicated formulae; we
use mainly some graphic illustrations (Figs. 1�4).

2. THE GENERAL SCHEME

In order to explain the idea of our method, we first consider an
abstract countable Discrete Model (DM) of a gas assuming that

X=[x1 , x2 ,..., xn ,...] (2.1)

characterizes a set of discrete states of each particle. In applications, the
vector x # Rm includes all m�1 discrete phase coordinates, such as
velocity, internal energy, etc. We note that the position of a particle is not
included in X since it varies continuously with time for the usual DVMs.
For a given set X defined as in (2.1), we can simply denote the states by
the integers [1, 2,...].
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Particles may change their states by pair reactions

(i)+( j) � (k)+(l ) (2.2)

with probabilities 1 kl
ij �0. These coefficients satisfy the following restriction:

(A) 1 kl
ij =0 unless p�1 conservation laws

�:(xi )+�:(xj )=�:(xk)+�:(x l), :=1,..., p (2.3)

are fulfilled for a given set of linearly independent functions �1 ,..., �p .
Of course, condition (A) does not mean that 1 kl

ij {0 in all cases
satisfying (2.3). The functions �1 ,..., �p are called the physical collision
invariants. For brevity, we consider only pair reactions (2.2) preserving the
number of particles, though various generalizations to other reactions are
also possible.

Usually we consider finite DMs, defined for a finite subset XN of the
set X defined in (2.1). With a change of numeration (if required), we can
always assume that

XN=[x1 , x2 ,..., xN ]$[1, 2,..., N ] (2.4)

Then the above defined coefficients 1 kl
ij describe K possible reactions (3.2)

inside the model, where K is the number of different combinations
(i, j | k, l ), 1�i, j, k, l�N, such that 1 kl

ij {0. We introduce the following

Definition. The finite DM described above is called a normal DM
if any nontrivial solution ,(x) of the K equations

,(xi )+,(xj )=,(xk)+,(x l)

for 1�i, j, k, l�N such that 1 kl
ij >0 (2.5)

is a linear combination of the p physical collision invariants �1 ,..., �p .
This definition was introduced for usual discrete velocity models for a

simple gas by one of the authors.(6)

Sometimes one can easily guess the simplest normal DM such as,
for example, the modified Broadwell model for a simple gas (see below,
Section 3). Then the following procedure helps to ``breed'' such models:
we begin with some given normal DM (2.4) and construct its extended
version. The latter is defined by a new set of states

XN+s=[x1 , x2 ,..., xN , xN+1 ,..., xN+s], s�1 (2.6)
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where all new states [N+1,..., N+s] satisfy the following conditions: for
any 1�r�s there exist three numbers 1�i, j, k�N such that 1 kN+r

ij >0.
In other words, each new state (N+r) is a product of a certain reaction

(i)+( j) � (k)+(N+r) (2.7)

which includes three states [i, j, k] being already present in the initial
DM (2.4).

Then the following statement is rather obvious:

Lemma. If the initial DM is normal, then the same is true for the
extended DM.

Proof. It is enough to prove the statement for s=1. All we need to
show is that a combined system of K equations (2.5) and one more equation

,(xi1
)+,(x j1

)=,(xk1
)+,(xN+1) (2.8)

related to the reaction (2.7) for s=1 has no new solutions. To this goal we
note that any solution of (2.5), (2.8) reads as

,(x)= :
p

:=1

c:�:(x)+u(x) (2.9)

for some constants c: (:=1,..., p) and a function u(x) linearly independent
of the �: (:=1,..., p).

The function (2.9) satisfies (2.5), and therefore u(x1)=u(x2)= } } } =
u(xN)=0. because of the assumptions of the Lemma. Substituting (2.9)
into (2.8), we then conclude that u(xN+1)=0. Hence u vanishes at all
points of our set and the lemma is proved.

In the next section we describe some applications of our Lemma.

3. APPLICATIONS

3.1. Simple Gas

The simplest application of the lemma concerns a usual DVM for
identical particles with integer velocities (x # Zd, d�2). In addition, we
assume that all (elastic) collisions with the scattering angle %=?�2 are
allowed. Then we have d+2 conservation laws (mass, energy and momen-
tum). The simplest Broadwell model with N=2d velocities is not (formally)
normal since it has only d+1 conservation laws. Therefore we transform it
to a normal DVM by adding only one more velocity v0=0 (Fig. 1a). This
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Fig. 1. The basic model for a single gas and its first extensions.

DVM satisfies the assumptions of the Lemma and can be used as a starting
point for infinitely many normal DVMs obtained by successive extensions.

In particular, its first extensions correspond to the DVMs shown in
Fig. 1 for d=2 (see also Fig. 4 of our previous paper(1)). One can easily
prove that all cubic (quadratic) models used in numerical experiments are
normal if the scattering cross section is positive for a scattering angle
%=?�2. This generalizes a related result, (7) which was proved in a more
complicated and lengthy way.

Sometimes it is convenient to use normal symmetric DVMs without
zero components of velocities. To construct such models one can begin
with an asymmetric model shown in Fig. 2a for the plane case (the
Broadwell model with four velocities (\1, \1) plus one more velocity
(2, 0)). Then we make its successive symmetric extensions; the first exten-
sion is shown in Fig. 2b.

3.2. Mixtures

Let us now apply the same scheme to mixtures. We consider a binary
mixture of gases with integer molecular masses m1 (light particles) and m2

Fig. 2. An asymmetric model can be used as a starting point to construct a symmetric
model.
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(heavy particles) such that 1�m1<m2 . In order to find a starting point
for successive extensions, we first fix an arbitrary normal DVM for light
particles with integer (vector) velocities v1 , v2 ,..., vN # Zd. The model has
d+2 conservation laws, whereas any DVM for a binary mixture has d+3
such laws, because the mass of each species is preserved. Therefore we add
only one velocity w0=0 for the heavy particles and obtain a (trivial) model
for the mixture with N+1 integer velocities [v1 , v2 ,..., vN ; w0]. Here and
below we denote by v # Zd (w # Zd ) the velocities of light (heavy) particles.
This trivial model, however, has exactly d+3 conservation laws and
satisfies the assumptions of the Lemma. Therefore we choose it as a
starting point and proceed to successive extensions. Thus we need to have
at least one kind of collision between particles of different masses which
reads as follows:

(vi )+(w0) � (vk)+(w1), (w0=0) (3.1)

for some values i, k�N and w1 # Zd. The simplest collision of this type
corresponds to the following values:(1, 2)

vi=(m1+m2 ,...), vk=&(m2&m2 ,...), w1=(2m1 ,...) (3.2)

where the dots denote zero components of d-dimensional vectors. First we
consider symmetric models only. Assuming that the initial DVM for light
particles is symmetric with respect to all coordinate axes, we need to have
at least 4d velocities with directions along any axis and projections
\(m1\m2) onto the axis. By using the above extension scheme, we obtain
a (N+2d+1)-velocity model, which includes now 2d new velocities
[w1 , w2 ,..., w2d ] for the heavy particles, having a speed |w|=2m1 . We note
that the above constructed (2d+1) velocity DVM for heavy particles coin-
cides with the simplest normal symmetric DVM shown in Fig. 1a for d=2.
If we do not add more velocities of heavy particles, then the combined
model for two species is split into two independent normal DVMs in the
limit of non-interacting species since the DVM for light particles is normal
by assumption. In order to construct symmetric normal DVMs with a min-
imal number of velocities we fix this simplest model for heavy particles and
consider the initial DVM for light particles. It is obvious that such minimal
DVMs correspond to the plane case d=2. Therefore, from now on, we
consider the plane case only.

The final step is to choose the initial DVM in such a way that the
model contains 8 velocities v=\(m1\m2 , 0) and v=\(0, m1\m2). We
note that

0�
m2&m1

m2+m1

=
a
b

<1 (3.3)
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Fig. 3. The simplest symmetric models for mixtures with m2 �m1=2 and m2 �m1=3.

where a�b is an irreducible fraction. Thus the denominator is an integer
b�2 defining the maximal values of |vx |, |vy | in the minimal (with respect
to the number of velocities) model. Hence, in the best case, b=2; this
occurs for m2=3m1 and the combined DVM satisfying all reasonable
restrictions contains 13+5=18 velocities (Fig. 3a).

Thus in the above class of DVMs for binary mixtures we obtain the
following results:

(a) The minimal number of velocities of heavy particles equals 5,
provided the model for heavy particles is in turn normal. If, in addition, we
demand that all velocities must participate in collisions of identical par-
ticles (w0=0 does not satisfies this condition in the above model), then we
need to add at least 4 more velocities (\2m1 , \2m1) to the set of
velocities of heavy particles. Such a model for a simple gas is shown in
Fig. 1b.

(b) The minimal number of velocities of light particles depends on the
denominator b of the fraction (3.3) and increases with b. In particular the
minimal DVM for light particles contains 13 velocities for b=2 (m2=3m1)
and 16 velocities for b=3 (m2=2m1).

On the other hand, a simple generalization of the reaction (3.1), (3.2)
leads to values

vi=(m2+m1 , y), vk=(m1&m2 , y), w1=(2m1 , 0) (3.4)
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in Eq. (3.1) with arbitrary y (note that Eq. (3.2) corresponds to y=0).
Another way to construct symmetric DVMs is to choose y=m2&m1 . One
can easily verify that such a collision yields the best result in the case
m2=2m1 (12+5=17 velocities, Fig. 3b). We note that this minimal sym-
metric model was first found in ref. 5. To prove that the models shown in
Fig. 3 are normal it is enough to verify this property only for light particles.
The verification is obvious since the two DVMs (Fig. 3a,b) are respectively
the second extension of the minimal symmetric DVM (Fig. 1c) and the first
symmetric extension of the minimal asymmetric DVM (Fig. 2b).

3.3. Nonsymmetric DVMs

Finally we consider some non-symmetric models.(5) In applications we
are often interested in axially symmetric problems. Then one can use
DVMs which are not necessarily symmetric with respect to an exchange of
the coordinate axes. Therefore we consider semi-symmetric models which
are invariant only under reflections with respect to both x and y axes. Such
DVMs for mixtures were first proposed and studied in ref. 5. As we shall
see below, the models(5) can be easily derived and generalized on the basis
of the above described general scheme. First we note that the simplest semi-
symmetric normal DVMs for a simple gas contain 5 or 6 velocities (Fig. 4).
The models are obtained from non-symmetric Broadwell models in a way
similar to that used for the symmetric models as shown in Figs. 1, 2. Thus
we can fix, for example, the model described in Fig. 4b for heavy particles
and try to find an appropriate model for light particles. It is easy to check
that it is impossible to combine two five velocity models for both species.
Therefore a minimal number of velocities of light particles equals 6
(Fig. 4c). The last step is to find velocities wk , k=0,..., 4, in the model of
heavy particles (Fig. 4b) and the velocities vj , j=1,..., 6, in the model of
light particles (Fig. 4c). In order to do this we demand that the collision

(v2)+(w0) � (v4)+(w1) (3.5)

Fig. 4. The simplest non-symmetric models for a single gas. They can be used as building
blocks of non-symmetric models for a mixture.
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satisfies all conservation laws

m1 v2=m2w1+m1v4 , m1v2
2=m2w2

1+m1v2
4 (3.6)

We assume without a loss of generality that v4=(&1, 0) and denote
v2=(1, y), w1=(x, z). The conservation laws lead to equalities

y=2(M&1)&1�2, x=2�M, z=(2�M )(M&1)&1�2 (3.7)

where M=m2 �m1 .
Thus, we have derived the 11 velocity model first published in ref. 5 as

the simplest possible normal semi-symmetric DVM for binary mixtures. It
is remarkable that this model has the same structure for any mass ratio.
Moreover it is valid for irrational values of M. One can construct another
version of this model by using the scheme shown in Fig. 4b for velocities
of heavy particles.

Apparently the idea of reconstructing such a universal symmetric nor-
mal DVM for binary mixtures with arbitrary mass ratio cannot be realized
with the above procedure. This may be a partial explanation of the cir-
cumstance that our previous attempt in ref. 1 produced non-physical
invariants. On the other hand, the above described scheme allows to con-
struct normal symmetric DVMs for any given rational mass ratio.
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